Finite Element Approximations of Nonlinear Elastic Waves
نویسندگان
چکیده
منابع مشابه
Finite Element Approximations of Nonlinear Elastic Waves
In this paper we study finite element methods for a class of problems of nonlinear elastodynamics. We discretize the equations in space using Galerkin methods. For the temporal discretization, the construction of our schemes is based on rational approximations of cosx and ex . We analyze semidiscrete as well as secondand fourth-order accurate in time fully discrete methods for the approximation...
متن کاملNonlinear Finite Element Analysis of Bending of Straight Beams Using hp-Spectral Approximations
Displacement finite element models of various beam theories have been developed using traditional finite element interpolations (i.e., Hermite cubic or equi-spaced Lagrange functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, total rotation φ and/or shear strain γxz, or in the integral form u...
متن کاملAdaptive Finite Element Methods for Optimal Control of Elastic Waves
In this paper a posteriori error estimates for space-time finite element discretizations for optimal control problems governed by the dynamical Lamé system are considered using the dual weighted residual method (DWR). We apply techniques developed in Kröner (2011a), where optimal control problems for second order hyperbolic equations are considered. The provided error estimator separates the in...
متن کاملFinite element analysis of deep beams on nonlinear elastic foundations
This research deals with the nonlinear material and geometric behaviors of reinforced concrete deep beams resting on linear or nonlinear Winkler foundation. The finite elements through ANSYS (Release-11, 2007) computer software are used. The reinforced concrete deep beam is modeled using (SOLID 65) 8 node brick element and the soil is modeled using linear spring (COMBIN 14) element or nonlinear...
متن کاملFinite element approximations of Landau -
This paper deals with nite element approximations of the Landau-Ginzburg model for structural phase transitions in shape memory alloys. The non-linear evolutionary system of partial diierential equations is discretized in time by nite diierences and in space by very simple nite elements, that is, the linear element for the absolute temperature and the Hermite cubic element for the displacement....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1993
ISSN: 0025-5718
DOI: 10.2307/2153241